An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory

نویسندگان

  • Shun-Peng Zhu
  • Hong-Zhong Huang
  • Yu Liu
  • Rong Yuan
  • Liping He
چکیده

Low cycle fatigue–creep is the main reason for the failures of many engineering components under high temperature and cyclic loading. Based on the exhaustion of the static toughness and dissipation of the plastic strain energy during fatigue failure, a new low cycle fatigue–creep life prediction model that is consistent with the fatigue–creep damage mechanism and sensitive to the fatigue damage process is presented in an attempt to develop viscosity-based approaches for general use in isothermal and thermo-mechanical loading. In this model, the theory of ductility exhaustion is used to describe the process of fatigue–creep interaction. It was assumed that the ductility exhaustion related only to the plastic strain and creep strain caused by tensile stress under stress-controlled conditions. In addition, the mechanisms of loading waveform, creep and mean stress effects were taken into account in a low cycle fatigue– creep regime. The predicted lives by the proposed model agree well with the reported experimental data from literature under different temperature loading conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Viscosity-Based Model for Low Cycle Fatigue Creep Life Prediction of High-Temperature Structures

Damage evolution during low cycle fatigue, creep, and their interaction behavior is actually a ductility exhaustion process in response to cyclic and static creep. In this article, a novel viscosity-based model for low cycle fatigue creep life prediction is presented in an attempt to condition viscosity-based approaches for general use in isothermal and thermo-mechanical loading. In this model,...

متن کامل

Energy-Based Prediction of Low-Cycle Fatigue Life of CK45 Steel and SS316 Stainless Steel

In this paper, low cycle fatigue life of CK45 steel and SS316 stainless steel under strain-controlled loading are experimentally investigated. In addition, the impact of mean strain and strain amplitude on the fatigue life and cyclic behavior of the materials are studied. Furthermore, it is attempted to predict fatigue life using energy and SWT damage parameters. The experimental results demons...

متن کامل

The Fracture Mechanics Concept of Creep and Creep/Fatigue Crack Growth in Life Assessment

There is an increasing need to assess the service life of components containing defect which operate at high temperature. This paper describes the current fracture mechanics concepts that are employed to predict cracking of engineering materials at high temperatures under static and cyclic loading. The relationship between these concepts and those of high temperature life assessment methods is ...

متن کامل

A new low cycle fatigue lifetime prediction model for magnesium alloy based on modified plastic strain energy approach

Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...

متن کامل

Low Cycle Fatigue Simulation of Valve Bridge Region in Cylinder Head Based on Critical Plane Model

The reason of this study is low cycle failure of cast iron cylinder head during the E5 standard durability test. The goal of the present investigation is durability test simulation and low cycle fatigue life evaluation of cast iron cylinder head. With uncouple structural analysis, preloads, thermal and mechanical load and boundary conditions are prescribed to finite element model of the cylinde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013